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A Method for Simulating Correlated Non-normal Systems of Statistical Equations
Real world data often fail to meet the underlying assumptions of normal statistical theory.
Many statistical procedures in the psychological and educational sciences involve models
that may include a system of statistical equations with non-normal correlated variables
(e.g., factor analysis, structural equation modeling, or other complex applications of the
general linear model). Monte Carlo techniques are used to test the appropriateness of
statistical procedures when the underlying assumptions of these procedures are violated.
There is a paucity of methods for generating systems of statistical equations in a simple
an efficient manner. Thus, the focus of the current study is to derive a general procedure
for simulating correlated non-normal systems of statistical equations with a focus on
computational efficiency. The procedure alloWs for the systematic control of correlated
non-normal (a) stochastic disturbance terms, (b) independent variables, and (c) dependent
and independent variables within a system. A numerical example is provided to
demonstrate the procedure. The results of a Monte Carlo simulation are provided to
demonstrate that the proposed method generates the desired population parameters and

intercorrelations.



A Method for Simulating Correlated Non-normal Systems of Statistical Equations
1. Introduction

It has been documented that data sets in the psychological and educational
sciences often violate the usual parametric assumptions underlying normal curve theory
(Blair, 1981; Bradley, 1968, 1982; Micceri, 1989; Pearson & Please, 1975). Further,
many variables of interest (e.g., reaction time) are intrinsically non-normal (Miller, 1988;
Zumbo & Coulombe, 1997). In view of these concerns, behavioral and other applied
researchers have relied on the results of Monte Carlo studies to aid in the proper
application of various statistical techniques. For example, Monte Carlo methods may be
used to compare the small sample properties of a test statistic with its competitor(s) or
whether these properties are consistent with the statistic’s asymptotic approximation
(e.g., Headrick & Rotou, 2001; Headrick & Sawilowsky, 2000).

With the advances made in quantitative methods, and the availability of the
modern desktop computer, Monte Carlo methods are widely applicable to many areas of
statistical research. As a result, more sophisticated methods of simulating data have
become available for conducting Monte Carlo studies. For example, Markov chain Monte
Carlo methods (e.g., the Gibbs or slice sampler, Gelfand & Smith, 1990, quert &
Casella, 1999) are commonly used to generate posterior distributions to carry out
Bayesian analyses in the context of learning or item response theories (e.g., Albert, J. H.,
1992; Verguts & De Boeck, 2000). Other applications of modern computer intensive
techniques include: the method of approximate bootstrap confidence (ABC) intervals
(Efron & Tibishirani, 1998); network-based direct Monte Carlo sampling in the context

of conditional logistic regression for evaluating drug withdrawal symptoms (Mehta,
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Patel, & Senchaudhuri, 2000); and likelihood inference with missing data (Gilks,
Richardson, & Spiegelhalter, 1998).

With this plethora of uses for Monte Carlo methods in mind, there may be
occasions when it is desirable to investigate the properties of statistics that involve
systems of statistical equations under a variety of conditions. For example, latent factor
theory of intelligence (e.g., Spearman, 1904) was the impetus for the development of
factor analytic methods. The subsequent generalization of factor theory (Thurstone, 1940)
resulted in many applications in the social sciences including its common use in the
development and validation of psychometric scales (e.g., personality measures).
However, the theory underlying these applications was based on normal curve theory that
also included the assumption of uncorrelated disturbance terms.

Developments in structural equation modeling (SEM) allow researchers to model
correlated disturbance structures. Most SEM software packages use maximum likelihood
estimation (MLE) procedures as a default option. Unfortunately, MLE has been
demonstrated to be extremely sensitive to departures from multivariate normality
(Muthén & Kaplan, 1985). For example, suppose the simple factor analysis model
depicted in Figure 1 represents a two-factor model of intelligence where the two latent
factors (e.g., performance and verbal intelligence) are assumed to follow normal
distributions. In practice, the six manifest variables (Y ’s) used to measure these
constructs may not have normal distributions. Further, the errors from these six tests may
also be non-normal and correlated due to response bias. Thus, the factor analytic model in

Figure 1 is an example of a system of equations where it may be desired to simulate (a)



correlated non-normal manifest variables (Y ’s), (b) correlated latent variables having
normal distributions ( X ’s), and (c) correlated non-normal error terms ( £°s).
More generally, consider the p-th equation from a system of T equations as

follows:
¢y

NxD, x is (kap), Bp is (kpxl),and S, isa
real positive scalar. Combining all T equations of the form in (1) yields a linear system
that can generally be expressed as:

y =xp +o¢, (2)

where y and & have dimension (TN x1), x is (TN xXK), Bis (K x1), where
K= Z:zlk , »and ¢ represents T scalars associated with each of the T equations. The

stochastic disturbances (&) in (2) are also assumed to have expected values of zero and
unit variances.

If the disturbance terms in (2) are contemporaneously correlated (e.g., &, is
correlated with € ) then a gain in efficiency can be achieved by testing the system jointly

using the method of generalized least squares (GLS) (e.g., Judge, Hill, Griffiths,
Lutkepohl, & Lee, 1985, p. 447). This approach of joint estimation is perhaps better
known as “seemingly unrelated regression equation estimation” (Zellner, 1962).
Moreover, the stronger the correlations are between the disturbance terms (or the weaker
the correlations are between the independent variables) within (2), the greater the
efficiency of GLS relative to ordinary least squares (OLS) (Dwivedi & Srivastava, 1978).

Thus, it may be desirable to study the relative Type I error and power properties of the




OLS and GLS estimators under non-normal conditions. Such an investigation would
usually be carried out using Monte Carlo methods. To determine any advantages of GLS
relative to OLS, a variety of non-normal distributions with varying degrees of correlation
between the disturbances would usually be included in the Monte Carlo study.

Generalized linear models (GLMs) and nonparametric tests have been suggested
as alternatives to OLS when the stochastic disturbance populations are non-normal. In
terms of GLMs, the disturbances can be specified to be some known continuous
distribution functions (e.g., exponential) (Hilbe, 1994). As such, statisticians conducting
Monte Carlo studies could investigate the validity and robustness of test statistics for
various GLMs, including OLS regression (a GLM with an identity link and normal
conditional distributions), when the error distributions have been misspecified. For
example, suppose the disturbance populations in (2) follow a gamma distribution with
parameters that yield typical fan-shaped heteroscedastic patterns. Under these conditions,
one could compare OLS and nonparametric (rank) regression procedures with a GLM
using various gamma distributions specified as the stochastic disturbance vector in (2).
Additionally, if the disturbances in (2) are non-normal and correlated, then a GLM with
generalized estimating equations (GEEs) could also be included in the study.

GEEs have gained considerable attention as a technique for analyzing data with
dependent non-normal errors (Liang & Zeger, 1986). In terms of the error component in
(2), the GEEs are GLS matrices that model their correlational structures while the GLM
specifies the distributional shapes of these terms (Horton & Lipsitz, 1999). Other

statistical analyses that may involve systems of statistical equations in Monte Carlo
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studies include: heirachical linear models; time series analysis; and other applications of
lthe GLM.

Most statistics textbook authors discuss the validity of linear models or test
statistics in terms of the various assumptions concerning the stochastic disturbance
populations (e.g., Cook & Weisberg, 1999; Neter, Kutner, Nachtsheim & Wasserman,
1996). For example, the usual OLS regression procedure has the assumptions that the
stochastic disturbance terms be independent and normally distributed with conditional
expectations of zero and constant variances. As such, in order to examine the properties
of systems of statistical equations using Monte Carlo methods, it is necessary to have an
appropriate data generation procedure that would allow for the a priori specification of
the distributional shapes and correlation structures of the stochastic disturbance
populations (such as the vector € in equation 2). Further, it is desirable that this
procedure be both efficient and general enough to enable the simulation of a variety of
statistical problems that may arise e.g., autocorrelation, multicollinearity, non-normality,
unequal variances or regression slopes, and other violations of assumptions.

There are procedures that will simulate correlated non-normal distributions (e.g.,
Headrick & Sawilowsky, 1999; Vale & Maurelli, 1983). These procedures are able to
generate k correlated non-normal variables for a single equation as in (1) or a system of
independent equations. However, these procedures have limitations with respect to their
ability to generate a system of correlated non-normal statistical equations. This can be

demonstrated by considering six non-normal distributions X, ,..., X, generated with zero

means and unit variances from the Headrick and Sawilowsky (1999) procedure where

each of the X’s has a unique non-normal distribution and a unique pairwise correlation



with the other variables. To form a system of two regression equations, let X, and X,
represent the two dependent measures with X; and X, as the independent variables for
the first equation and X and X as the independent variables for the second equation.

Further, let u, and u, represent the resulting error terms from the OLS regression of the
dependent measures on the independent variables for this system.

This approach to creating a system of statistical equations presents a problem if
control is desired over u, and u, in terms of their distributional shapes and correlation.
Specifically, the resulting skew, kurtosis, and correlation between the error terms would
be difficult to analytically determine. Moreover, the variances of «, and u, would also

be unequal. These problems are exacerbated when more equations are introduced into the
system, which may also include various specified degrees of correlation and non-
normality.

Another problem with respect to the Headrick and Sawilowsky (1999) and Vale
and Maurelli (1983) multivariate power methods is that these procedures are extensions
of the Fleishman (1978) univariate power method. As such, not all non-normal (marginal)
distributions can be generated in terms of the various possible combinations of skew and
kurtosis. For example, the lower boundary point of kurtosis for symmetric distributions is
-1.15132 (Headrick & Sawilowsky, 2000). Thus, it is not theoretically possible to
simulate a (rectangular) uniform density using these procedures. (See Headrick &
Sawilowsky, 2000, for a more complete discussion on the derivation of the boundary for
the Fleishman coefficient model.)

To circumvent the aforementioned problem, Headrick (2000) derived a

polynomial transformation for the power methods that allows for the additional control of



the fifth and sixth moments. As a result, a much larger family of distributions is possible
to simulate in terms of the available combinations of skew and kurtosis. Further, simple
families of distributions also exist in terms of various combinations of fourth and sixth
standardized cumulants.

2. Purpose of the Study

There is a paucity of methods for simulating systems of correlated statistical
equations that enable the evaluation of more modern sophisticated statistical procedures
as described above. Thus, the purpose of this study is to derive a general procedure that
allows for the generation of systems of statistical equations with correlated non-normal
distributions with the least amount of difficulty. More specifically, the objectives are to
(a) extend the Headrick (2000) polynomial transformation to develop a method that
generates systems of statistical equations with correlated non-normal dependent and
independent variables and correlated non-normal stochastic disturbance terms, and (b)
provide Mathematica (Wolfram, version 4.0, 1999) notebooks (available from the first
author) that solve for power constants, intermediate correlations, and slope coefficients
for implementing the procedure.

The procedure is derived generally for simulating a system of T equations. A
numerical example is subsequently provided to demonstrate the procedure. The results of
a Monte Carlo simulation are also provided to demonstrate that the proposed procedure
generates the desired population parameters and intercorrelations.

3. Mathematical Development

Consider the T equations in (2) more explicitly as follows:

Y1 =1310 +1311X11 +"'+ﬁ1iX1i +"'+131jX1j +"'+131kX1k +0,¢, (33)
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Y, =B+ B, X+t B, X+t B, X+ + B, X, +0,€,, (3b)
Y, =B+ B8,X, +-~+‘,quXqi +o+f X, +-+B,X,+0,€, , and (3¢c)
.YT =B+ BrXp+ o+ B X+t B Xyt B Xy + 06 (3d)
The proposed procedure creates Y, ,..., Y, from the right-hand sides of (3a)

through (3d). That is, for all T equations, the Y variables are linear combinations of
randomly generated X and € terms. Because each of the disturbance terms (€ ) has unit
variance, the scalar terms (& ) are included to allow for the creation of equal or unequal
variance conditions. It should also be noted that it is not necessary for each of these
equations to have the same number of independent variables. (Eliminating a particular

independent variable in the system can be accomplished by setting its associated slope

coefficient to zero.)

Because the independent variables and stochastic disturbance terms in (3a)
through (3d) are generated and correlated in the same manner, we have selected the
independent variables X , and X, in (3b) to refer to in deriving the proposed method.

Correlations between £, and &, or between X, and X, in (3b) and (3c) can be created

in an arialogous manner with the method presented below.

More specifically, the X ,; and X, in (3b) and 3c) are generated and correlated

using the fifth-order polynomial transformation derived by Headrick (2000, Equation 16)

as follows:
_ ’ 72 73 74 ’5

X, =Cop +c1piXpi +c2piXp,. +c3p,.Xpi +c4p,.Xpi +c5p,.Xpi , and (4a)
\_ ’ 72 73 74 75

X pj = Copy +Cip Xy 60 X + 3 Xy HCypy X +C5 X (4b)




where X, and X' ~N(0,1). The constant coefficients (cq,....,Cs,. ) in (4a) and (4b) are

determined by simultaneously solving equations (37) through (42) from Headrick (2000,

Appendix 1) such that X ,, and X ,; have zero means, unit variances, and the third (7,),

fourth (¥, ), fifth (¥,), and sixth (7, ) standardized cumulants from desired probability

density functions.

The values of X, and X, in (4a) and (4b) that are used to create the

independent variables (X ,;, X ;) in (3b) are correlated at an intermediate level

pi?
according to the following Lemma:

Lemma 1. Let r, be real-valued where lrpi‘e [0, 1] A andlet Z,, V, Wpl,...,W ~

pi=p0,pk > pk

iid N(O,1). Further, let Z,, =r,,Z, +V l—r;0 ,where t=1if r,, < 1,and t=0if r,, =1.

pi©t+l pi pi?

If X, =r,Z, +W,\J1-r and X, =r,Z +W, [1-r;  then X, and X}, ~N(,1),

with cotrelation of P i = To07oiTsi when =1, and P rx

= Tpolpi =r,r, whent=0.In

’

]

. _ _ _ _ _ 2 _
particular, note that Py = 0 whent=r, =r,=1,and p . =r" whenr, =r,

and for when ¢=0.
Proof. The result is a consequence the proof of Lemma 1 from Headrick and Sawilowsky
(1999).

Note that Lemma 1 enables, for example, the i-th independent variable for each of
thq T equations in a given system to be the same. This can be shown, from a more general

use of Lemma 1, as a special case of where r,,=r, =r, =1
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The intermediate correlation between X ;,. and X ;j (p,. . )in Lemma 1 is
. pitpj

determined by setting the following equation from Headrick (2000, Equation 26) to the

desired post-correlation between X ,, and X , (0 _ )in(4a)and (4b):

= 3c4pic0pj + 3c4pic2pj +9c4p,.c4pj +Copi (copj +Cyp +3c4pj)+

XpiX pj

c,pic,pjpxwﬁ3c3p,.c1pjpx;ﬁw 155,610, 0+ 3C1pC35P

QA ~ 1L AR ~ 1
/"'3pi"'3pjp +93C5 03, 0, +15L1pit,5pj,u

+45¢, Co . 0
XpiXpj PiXpi 3pi“sp ¥

.

- (5)

XpiXpj

2 2
225¢,,,C5,; P + 12C4P1C2Pjpx;,ix’l,j + 72C4pic4pjpx;,,-x;,,- +6C5,,C5,, 0

o
X piXpj
3 3

6Oc5p,.c3pj,0 + 6Oc3pic5pjp + 600c5p,.c5pj,03

XpiXpj

4
+24c¢,,,C4, 0 +

XpiXpj

+ 12C4pipi;,ix;,, ).

XpiXpy Xpi Xpj

5
120c,,,C5,, 07, +Cypi(Copy +Cop +304, +2¢,,0

XpiXpj

2

XpiXpj
The purpose of correlating X, and X at the intermediate level, P, > 18 to control

for the non-normalization effect of the constants in (4a) and (4b) such that the resulting

X ,; and X . have the desired post-correlation.

Using Lemma 1 more generally, the following theorem can be stated:

Theorem1.If X ., X ., X ., X br € & have zero means and unit variances from

pi? v’ qi?

equations of the form in (4a) and (4b), specified correlations Oy x » Oy x> Px,x,
p. ., fromequations of the form in (5), cov(¢,, X ;) =0, and cov(¢,, X ;) =0,V ,,

then the following correlations hold with respect to (3b) and (3c):

ﬂl’i +ij¢piﬂpjpxpixpj

pypxpi = ’ (6)
\Fﬁ + 2B +2 2. BBy Py x,
pi pi#pi
BiPx x.,
Pry =5 ZZ' et : - ™)
\/Uq +Z i +22.ﬂqiﬂrvpxq.»x,,,-
qt qg*qi
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0 _ o-Po-qpfpfq +ZpiZqiﬂpiﬂqipxpixqi
Yy, —

- \/;ﬁ +2 By +2 3 BBy, \qu +D. B +22 BBy x,
pi qi .

pi#pi qj#qi

,and (8)

0-" pspsq

pyp(aqsq) = . (9)
o, \[aﬁ F 2Bt 2 2 BBy P,
pi

pi*pi
Proof. See Appendix 1.

Thus, given exogenous correlations between the independent variables ( 0 XX, )
the pairwise correlation(s) between the dependent variable (Y, ) and the independent
variables ( X ,; ) are determined by simultaneously solving a system of k equations (of the
form in equation 6) in terms of k unknowns ( 8 ) for the desired correlation(s) of Py x, -
The correlations Oy , , Py x,, » and Py (o,¢,) CaN subsequently be determined by evaluating

(7), (8), and (9) using the specified correlations and slope coefficients from (5) and (6).
4. Numerical Example
Suppose it is desired to generate a system of three equations of the form in (3b).
For k=2 independent variables, where each disturbance term has unit variance, the

equations are listed as follows:

) 4 =,310+,311X11+ﬂ12X12+0'1£1, (10)
Y, =ﬂ20+:321X21+ﬂ22X22+0'282’and (11)
Y, =,330+,331X31+ﬂ32X32+0'383, (12)

where var(o,€,) =0 (1) =1,V ,,.
Letting =0 in Lemma 1, for this example, the algorithms to generate correlated normal

deviates are as follows:
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Xlll =nZ +W, 1—’121 ) (13)
X1, =1 Z +Wpyl-17 (14)
X;.l =n,Z, +W21V1—r221 ) ) (15)

X;2=r2221+W22V1—r222 ) ' (16)

wr/ — > . T¥Y ‘1_ 2 1 P W AN

A3 =L Wy yl—15 , and /)
’ 2

Xy =r,Z +Wyyl-ry; . (18)

Similarly, the algorithms to generate the correlated errors based on Lemma 1 are:

& =nZ +Wyl-r’, | (19)
£ =rZ +W,J1-r} ,and (20)
£ =nrZ + W\ J1-r] . (21)

(In accordance with Theorem 1, note that Z, and Z, are independent.) The resulting

X/ ,...,& in (13) through (21) are normally distributed with zero means, unit variances,

and have the intermediate correlations according to Lemma 1.

Given this general framework, suppose it is desired to approximate the following
correlated non-normal X ’s and €’sin (10), (11),and (12): a) X, = X, = X, =
exponential, b) X, = X,, = X,, =double exponential, and c) & = &, = £, =Cauchy,
where oy  =.10, py . = 35, Py x, =705 Pyx, = Prx, =40, Prx, = Prx,
=.50, Pyx, =Prx, =-60;and p,. = P, = P, =40.

The following steps are taken:

ERIC 1215




. Obtain the constants to generate the standardized non-normal distributions (see
Headrick, 2000, pg. 57). The standardized cumulants and constants are listed
below in Table 1.

. Determine the values of r,,,...,r,, 1, r,,and r, to use in (13) through (21). This
is accomplished using (5) by setting the left-hand side to the desired post-

correlation (0, 5, =-10; o4 =.35; p; x. =.70) and substituting the

constants into the right-hand side and then solving for these values. Accordingly,

this yields values of r, =.350171, r,, =.321446, r,, =.657772, r,, =.597454,
r, =.937894, r,, =.831441, and r, = r, = r, =.749509.

. Obtain the slope coefficients to use in (10), (11), and (12). This is accomplished
by simultaneously solving two equations of the form in (6) for each of the desired

post-correlations ( Prx, ). The coefficients are as follows (see Appendix 2):

B, = B, =0431834, B, = B, =0.466760, and S, = f,, =0.464851.

. Substitute the values of #,,...,n,, 1, 1, ,and r, obtained from step (2) into
equations (13) through (21) to generate X/, X,,, &/; X3,, X5,, &;and X,
X, €. The intermediate correlations are oy v, = 1,h, =.112561, py. 4. =
Tyly =.392989, Oy i =131, = 7719803, and P = Oy = Py =11y =
nr, = r,r; =.561764.

. Substitute the values of X;,, X|,, &; X5, X5,, €;and X, X;,, & from

step (4) into equations of the form in (4a) and (4b) to generate the non-normal



deviates X,,, X,,, &; X4, X5, & and X, X,,, & with the desired post-
correlations.
6. Substitute X,,, X,,, &; X,,, X,,, &;and X,,, X,,, & from step (5) and the
slope coefficients from step (3) into (10), (11), and (12) to generate the values of
Y,, Y,, and Y, with the desired post-intercorrelations.
Given the specified correlations from above, the correlations between the
dependent variables are follows (see Appendix 2): oy, =.369251, Py, =-393505, and

Py,y, =-508267. The correlations between o, ~and oy, for example, are as follows

(see Appendix 2): oy, =.141997 and p,, ~=.138445.
5. Monte Carlo Simulation
To evaluate the proposed procedure, the population parameters 4, o, ¥ ¥y
Y1 Vs, and the correlations between and within equations (9), (10), and (11) from the

numerical example in the previous section were simulated using an algorithm coded in
Fortran 77. The algorithm used subroutines NORMBI and UNI1 from RANGEN (Blair,
1987) to generate pseudo-random normal and uniform deviates. Independent sample sizes
of N =(10,10,10), (100,100,100), (1000,1000,1000), and (10000,10000,10000) were
generated for simulating the specified standardized cumulants and various correlations.

Values of all standardized cumulants and correlations were calculated for each repetition

and then averaged across 50,000 repetitions. Thus, the average values of #(2), o
(6-2 ), }’1 (71 ), }/2 ( 72 ), }/3 (73 ), }/4 ( 74 ), ,Oxux12 (,ﬁxux12 ), ,0)(2,)(22 (,5)(2,)(22 ),

px:lxn(ﬁxnx:z )’ py,x” (ﬁylxll )’ pylxn(ﬁylxu )’ pyzle’(ﬁyzle )’ pyzxu(ﬁyzxzz )’
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pyzle(ﬁyzle )’ pyzxzz(ﬁyzxaz )’ pYIYZ(ﬁYIYZ )’ pyly:i (ﬁylyl )’ pyzya (ﬁyzyz )’ pyzxu( p—yzxu )’

Pr,x,, (,5,2 X., ), Pee, ( ,'O'EIE2 ), P, (,55153 ), and Peye, (,55253 ) computed were based on
Nx50,000 random deviates. The average values of the population parameters are reported
in Table 2 and Table 3.

Inspection of Tables 2 and 3 indicate that the proposed procedure generated
average values of the popuiation parameters that were in close agreement with their
respective population parameters. In terms of the simulation results concerning the
average values of correlation, the procedure produced excellent agreement between these
values and their associated population parameters even for sample sizes of N=10.

6. Discussion

The simulation results from the previous section indicated that the proposed
procedure generated the desired population parameters and specified intercorrelations. It
is also beneficial to provide visual representations of some of the distributions generated
by the Headrick (2000) procedure. Specifically, illustrated in Figure 2 are the relative
frequency histograms of the approximations of the exponential and double exponential
pdf's. Inspection of panels A and B in Figure 2 reveals that the proposed procedure
approximated the considered theoretical densities very well.

The proposed procedure is also useful for generating other systems of equations
based on the GLM. For example, the method could be used to generate T independent
equations to investigate the statistical properties of competing nonparametric tests in the
context of analysis of covariance (ANCOVA) or repeated measures.

With respect to ANCOVA, one attractive feature of the proposed method is that it

has an advantage over other competing procedures (e.g., Knapp & Swoyer, 1967) to the

15
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extent that it allows for the creation of populations with unequal regression slopes while
maintaining the between-group equal variance }assumption. This can observed by
inspecting equations (3b) and (3c) where the slope coefficient(s) could change (i.e., made
unequal) while the error terms remain unchanged. Subsequent to any changes made to the
slope coefficients, the variate and covariate correlations can then be determined from
equation (6). Thus, this feature of the proposed method would be a remedy to the
problem with the algorithms used to correlate data in the Monte Carlo studies by
Hamilton (1976) and Peckham (1968). Specifically, the algorithms used in these studies
were unable to simulate the unequal slope condition without also simultaneously
violating the between-group equal variance assumption. (See Rogosa, 1980, for a
discussion on the validity of the Hamilton, 1976, and Peckham, 1968 studies with respect
to this issue.)

Many other applications of the proposed procedure to the GLM are possible.

From the GLM perspective, the dependent variables (Y, ) could represent the same

variable collected under T different conditions or at time points 1,...,7. In either case, the

independent variables ( X ;) could represent static covariates (€.g., pre-existing ability

measures often used in ANCOVA models). Thus, using the special case of Lemma 1

noted above, the i-th independent variable in each of the T equations would be the same.

Conversely, the independent variables ( X ;) could also be different for each of the T

equations and may be used to represent time-varying covariates (i.e., some variables

measured over the T periods along with ¥, ). There is also the possibility of using a

combination of both static and time-varying covariates (X ;). As such, a variety of

analytic procedures are comparable under this data generation process.
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The proposed method would also allow the generation of repeated measures data
of nonspherical structures with non-normal disturbances and non-normal covariates. It
should also be noted that with non-normal stochastic populations one could specify all of
these distributions to be the same. This assumption is implicit in parametric analyses of
repeated measures data because normal disturbance populations are implied. Likewise,
robust estimators such as the rank-based shift model (Lehmann, 1998) also assume that
disturbance populations have identical (but not necessarily normal) shapes.

By contrast, fully nonparametric hypotheses (e.g., Akritas & Arnold, 1994) make
no assumptions about the distribution of the stochastic disturbance populations and
therefore do not require the conditional (disturbance) populations to have identical
variances or distributional shapes. Fully nonparametric hypotheses differ from robust
estimators because they do not attribute the rejection to location parameters alone but
rather to any distributional differences, a concept recently referred to as “stochastic
heterogeneity” (Varga & Delaney, 1998). Thus, hypotheses of this form reduce the risk
of drawing incorrect conclusions about the likely sources of a statistically significant
result, but do so at the cost of not being able to characterize precisely how population
distributions differ (Serlin & Harwell, 2001).

The proposed method would also be useful in the context of time series analysis.
Specifically, the procedure could be used to model instrumental variables which address

~one of the problems with certain autoregressive models (e.g., the adaptive expectations

model) where the dependent measure from a preceding time period (Y, ) is included as a
stochastic independent variable in the subsequent (g-th) period. As such, the vectors Y,

and €, are usually correlated. Using the proposed method, a Monte Carlo study could be
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arranged to simulate non-normal “proxies” correlated at various levels between Y, and

€,. The correlations can be determined from equation (9).

Application of the proposed method to the GLM is flexible and has the potential
to simulate other types of models where disturbance populations change over time. For
example, when data sets with repeated measures have mistimed measures or missing
data, the GLM with GEEs and hierarchical iinear modeis are often considered preferabie
to the usual OLS univariate and multivariate procedures.

It may also be reasonable to consider a model where the correlation structure is a
function of time between the observations. Thus, data could be also be generated for
Monte Carlo studies involving dynamic regression models that have distributed lags or
moving averages.

7. Conclusion

Systems of linear statistical equations with correlated non-normal variables are
widely applicable in many experimental situations. Some examples include confirmatory
factor analysis, hierarchical linear models, time series analysis, and other applications of
the generél linear model (e.g., analysis of covariance, repeated measures). Thus, the
concern of the present study was to develop a procedure that enables the simulation of
systems of statistical equations. The procedure allows for the creation of systems with
non-normal variables and specified intercorrelations between a) dependent variables, b)
independent variables, c) dependent and independent variables, and d) stochastic error
terms. The results of a Monte Carlo simulation indicate that the proposed procedure

generated the desired population parameters and specified intercorrelations.
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TABLE 1. Values of ¢,,...,c, that were used to simulate the desired non-normal

distributions?.
Dist. Co c c, Cy Cy Cs
1 -0.307740 0.800560 0.318764 0.033500 -0.003675 0.000159
2 0.000000 0.727709 0.000000 0.096303 0.000000 -0.022320
3 0.000000 -0.159685 0.000000 0.355036 0.000000 -0.009473

aThe three distributions are described as follows: (1) approximate exponential (¥, = 2,
¥, =6, ¥, =24, y, =120); (2) approximate double exponential (y, =0, y, =3,
¥, =0, ¥, =30); and (3) approximate Cauchy (¥, =0, ¥, =25, y, =0, y, =1500).

TABLE 2. Values of average correlation from the simulation?.

Population Average

Correlation Correlation N=10 N=102 N=103 N=10*
4000 Pyx, .3999 3998 .3998 .3999
4000 Prx., .3998 4000 4001 4000
3935 Py, 3933 3933 3931 3934
.5000 Pr.x,, 4998 4998 4999 .5000
.5000 Pr.x, - .5003 .5000 .5001 4999
.3693 Py, 3689 .3690 .3690 .3692
.1420 Pr.x,, 1421 .1420 1421 .1419
1384 Prx, 1383 1383 1385 .1384
.6000 Pr.x, 5994 5995 .5995 .5999
.6000 Prx.~ 5999 5999 .6000 .5999
.5083 | Py, .5083 .5082 .5082 .5083
.1000 Px.x., .0999 .0999 .1000 .1000
.3500 Px.x., .3501 .3500 3502 .3499
.7000 Py, x., .6995 6995 .6996 .6999
4000 Pee, .3993 3997 .3995 .4000
4000 P, .3992 3999 .3994 4000
4000 P..., 3997 .3999 4000 4000

2The population parameters for the variables are: (1) X, = X, = X;, = (¥, =2,
143 =6, Vs =24, Vs =120); (2) X12= X22 = X32 = (}/1 =0, | =3, V3 =0, V4 =30);
and (3) =&, =& = (}’1 =0, V.= 25, V= 0, Vs= 1500)




TABLE 3. Average values of mean( 2 ), variance( 8 ), and the third(%, ), fourth(7,),
fifth( 7, ), and sixth( ¥, ) standardized cumulants from the simulation®.

Xu X & Xa Xn €2 X, Xy €3
N=10
ﬁ -0.00004 -0.00038 -0.00021 0.00010 0.00007 -0.00008 -0.00034 -0.00001 -0.00008
A 0.99293 1.00042 0.99736 0.99928 1.00083 0.99856 0.99872 0.99998 1.09866

19

7, 1.99887 -0.00352 -0.00480 1.99949 0.00023 0.00450 1.99901 0.00101 -0.00170
7, 5.95550 3.00977 24.8245 5.95497 3.02343 24.8869 5.96749 299814 24.7938
2 23.8746 -0.07745 -0.18880 23.8247 -0.00188 0.81641 23.9470 0.01741 -0.55553

7, 115.645 30.4301 1474255 118.388 31.2483 1484.101 119.152 29.9682 1475.551
N=10?

P’ -0.00005 -0.00008 -0.00007 0.00002 -0.00012 -0.00001 -0.0001 -0.00001 -0.00001
52 099921 1.00020 0.99960 0.99918 1.00005 0.99973 0.99891 0.99990  1.00975
7, 1.99896 -0.00129 -0.00321 1.99860 -0.00008 0.00633 1.99785 0.00040 0.00433
7, 599765 3.00426 249644 598813 3.00426 24.9696 5.98946 3.00009 24.9383
7, 24.0212 -0.03029 -0.38283 23.8938 0.00304 0.10304 23.9333 -0.02657 0.09315
7, 120.265 302585 1481.675 118.601 30.2260 1495552 119.097 30.0729 1492.868
N=103

o -0.00007 -0.00018 -0.00024 0.00010 0.00003 -0.00013 -0.0001  0.00002 -0.00013
52 099915 1.00033 0998555 0.99938 1.00042 1.00030 0.99885 1.00026 1.00128
7, 1.99811 -0.00242 -0.00200 1.99967 0.00012 0.00341 1.99809 0.00029 -0.00275
7, 599076 3.00629 24.8942 599425 3.01366 25.0105 5.99569 3.00495 249178
7, 239727 -0.06022 -0.00207 23.9342 -0.02068 0.09304 24.0306 -0.00248 -0.07326
7, 120.061 302127 1486226 118974 30.1845 1502.074 120.518 30.1534 1493.898
N=10%

7 -0.00003 -0.00003 -0.00002 0.00000 -0.00002 0.00000 -0.00001 0.00001  0.00000
& 0.99984 0.99997 0.99996 0.99985 1.00002 0.99990 0.99908 1.00000  0.99999

7, 1.99902 -0.00025 0.00050 2.00030 -0.00024 -0.00020 1.99803 0.00016 0.00201
7, 6.00722 2.99966 24.9951 599153 3.00039 24.9932 599649 299952 25.0004
7 23.9842 -0.00484 0.01022 24.0127 -0.00897 0.06241 23.9822 -0.00160- 0.19972

Vs 120.016 29.9999 1499.177 119.971 30.0030 1499.134 119.993 29.9869 1499.332

aThe population parameters for the variables are: (1) X,, = X,, = X;, = (¥, =2, ¥, =6,
¥, =24,7,=120)(2) X,=X,=X;,=(7,=0, ¥,=3, ¥, =0, y,=30); and (3)
§=6=6=(y,=0, y,=25, y;=0, y, =1500).




FIGURE 1. A two factor confirmatory factor analysis model with cross-loadings and
correlated error terms ( £ ’s). The parameters 0 and @ denote correlations between the

X’s and between the €’s.

8

Relative Frequency
Relative Frequency

42 1.28 2, 3.00

Value of X Value of X

A) Exponential B) Double Exponential

FIGURE 2. Approximations of the exponential and double exponential pdf’s generated
by the Headrick (2000) polynomial transformation from equations (4a) and (4b). The
constants used to simulate the densities are listed in Table 1. The sample size used was
10,000. For amenability to the standard exponential pdf, a constant of 1.0 was added to

each value of X in panel A. |
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Appendix 1
Without loss of generality, Theorem 1 can be shown from the independent use of

Lemma I to create X ,;, X ;;

and £,, &, such that cov(ep,Xpi) =0 and
cov(¢,, X )=0, V., ,,and with random variables that follow a standard normal

distribution.

ETY,X ,]-ETY,JETX ]

PROOF: p, , = —, 22
Prot ((EIY?1- (ELY, D®)x (E[X 31— (E1X , )} @2
E[Y,X ,1- E[Y,]E[X ]
'OY‘IXP" - 2 2 2 2392 ° (23)
{(E[Y]1- (E[Y,D)*)X(E[X }]1-(E[X ,])*)}
E[Y Y 1-E[Y ]E[Y, ]
vy = P q P q 1 , d 24
Pron {(E[Y?1- (ELY,])*) X (E[Y}1-(ELY,)")}" . @9
) E[(Y,)(o,€,)]- EIY,]E[0,¢£,] 25)
Procees ((E[Y?]- (EIY,D*)X(El(0,£,)*]1- (Elo,€, 1))

Setting c,,, =1 and all other constants (Cq,.,Cpu- - .»Cs. ) tO Z€T0 in equations of the form

in (4a), (4b), and (5) gives the standard normal case where X ,, = X ;i ,

X=Xy
X, =X, X=Xy, 6,=€,, €, =€, Py x, = Px.x,» Pxyxy = Pxyxyr Pr,x, =
Pyx,and O, . =0y Further, in Lemma 1, (3b), and (3¢), let all X ,; be a function
of Z, andletall X, be a function of Z, . Similarly, let £, be a function of Z/ and ¢,
be a function of Z;, where cov(Z,,Z]) = cov(Z,,Z;) =cov(V,V’)=0.

It follows from expressing Z, as a function of Z, in Lemma 1 that:
E[X ,1=r,E[Z,)+ EW, W\ 1-r1; =1, E[Z ]+ E[V]\/l-——r,fo )+ EW,1-r}; =0,

because E[Z,]=E[V]= E[qu] =0.
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It follows analogously that:
Elo,e,)=0,(r, E[Z;]+ EW, ],/1- )
=0, (1, o EIZ{1+ EIV'1-12,) + EW, }|[1- 1 ) =0, because
E[Z]1=E[V]= EW, 1=0.
Define the variances of X, and o,¢€, as:
var[X )= E[X ]~ (E[X ,])*,and (26)
var[o,€,]= o varlg,] = o) (E[€}]-(El,])), since 0, is a constant scalar. 27
Applying Lemma 1 to both (26) and (27) gives:

var[X 1= E[X2 1= E[r}V* —ririV’ + 2 VW, L= P2 =12 + W2 = r2W 2 +

(28)
2rporquZ1 1- r;0 + 2rp0rq,.Wq,.Z1 1- rqf + r;Or(;le 1-0
var[e, 1= E[e?]= E[r2V'> =2, r2V? +2r, VW, ,/1— rle ‘/1— rl +Wri-r2w?2 +
q q q q” & q q q q q q (29)

2r5q0réVZI',,1—réo +2r, o1, W, Z| 1—ré +ré0réZl'2]—0,
because E[X ;] = E[¢,] =0.

Taking expectations in (28) and (29) yields:

var[X ,]=E[X ] =1, and

var(g,] = E[£]] =1, because

E[Z] = E[Z]’] = EIW}] = EIW,;] = E[V*]= E[V"] =1, and
ElZ,] = E[Z]] = EW, ] = EIW, ] = E[V] = E[V'] =0.

Thus,

varlo,€,1= 0} E[e]=0,() =0, .
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It follows from analogous arguments that:

E[X ,]=E[g,] =0,

var[X ;1= E[X}]=1, and

varlo,£,]1=0 Ele.]=0,() =0}

Thus,

E[Y,]=p,, and E[Y,]= f3,,, because El¢,] = E[¢,] = E[X,1=E[X,]1=0,VY ,.
Hence,

_ElY, X ;i1 (B,)0)

Py x,, (30)
VEIY 1= B 1
P E[Y, X ;1= (B, )0) 31)
YqXp,- -
JE 1= i
E[Y,Y ]-
,pryq = 2[ - q2] ﬂpOﬂ;O 2 and (32)
JEIY21- B2, ElY1- Bl
5 _ El(¥,)0,£)]-(B,,)0) (33)
yP(qulI) - :
JEW )-8 o
Expressing Z,(Z;) as a function of Z, (Z]) from Lemma 1 yields:
Y} =B, +0,(r, Z{+W, J1- I+ D B (rZi + W\ 1-1.))%, (34)
pi
Y = (B +0,(r, o Z{ +V, /1 —rlg tW, 1= )+
(35)
D Bir(reZ, + v i- ri )+ W 1-ri)?,
qi

Y, X, =(B,+0,(r, Z[+W, ,/1— 2+ D Bu(rZy + W, 1= 1 )X

P (36)

2
(ry + W, yl-r,),
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Y, X, =B, +0'q(rEPOZl'+V',/1—rE2PO +W, -1 )+

(37)
Zﬂqi (ry(roZ +V1-ri))+ W, 1- rENX(r, + W, 1-rk),
qi

Y,Y, =B, +0,0r, Z{+W, ‘/1—@ Y+ Y B (ruZy + W\ [1-r2)) X
pi
(B +0,(r, oZ{ +Vq/1—r;o +W, L= )+ (38)

> B (rZ +V 1= 1)+ W, 1=r})), and
qi

Y, N0,6,)= (B +0,(r, Z{+ W, ‘/1— ro )+ > B (r,Z, + W, 1= ri)x
pi

o, (rEPoZI' +V'1/1—- rfpo +W, J1- ré ).

Expanding the right-hand sides of (34) through (39) and taking expectations gives:

(39)

EY =0+ + 2 B +2) BuB,Px x, . (40)
pi pi#pi

ElY; =07+ 80+ 2, Br+22 ., BuByPx x,» (41
qi qj+qi

ElY,X, 1= B+ 2 ByPxx, » (42)

pj#pi
ElY,X,1=) BuPxx, » | (43)
qi
ElY,Y,1=0,0,0, ., +B,8,t>. 2> BuBuPx,x, » and (44)
pi qi
E[(Y, X0 EN=0,0,,, - (45)

Substituting (40) through (45) into (30) through (33) and simplifying gives the

expressions in (6), (7), (8), and (9) as follows:

P _ ﬂpi+ij¢piﬂpjpxPixPj

v,X,; — > 2 ?

o \/0p+zﬂpi+zzﬂpiﬂpfpxpixpf
pi

pi#pi
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0 _ Zqiﬂflfpxqixpi
Y, X, \/0.; +Zﬂ:’ +22ﬂq,~ﬂq,‘pxqixq, ,
qi a?qi
p = o'pa‘lpgpgq +Zpizqiﬂpiﬂqipxpixlﬂ
" \/0;2; +Zﬂ§i +22ﬂpiﬂpjpxp,~xpf \/G; +Z qzz +22'B‘1iﬂ‘lfpxqfxqf
pi «

, and

pj#pi aj#qi

" _ appgpgq
Fr, (o) — 2 2 .
T, \/;p +2. B, +22 BBy x,
pi pj#pi

which completes the proof.
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Appendix 2

~ For the desired correlations of p,, = pyy =.40, Py y, = Pyx, =-50, and
Pyx, = Pr,x, =60, the slope coefficients B, and B,; B, and By,; By and By, are
determined by simultaneously solving the following three independent sets of two

equations for the unknowns ( 8,,, B.,):

B + B (10) and (46)

40= ,
J1+ B2+ B2 +28,5,(.10)

4o B, + 5,,(.10) ; -
JL+ B2 + B2 + 28,8, (.10)

50= Pa t Bn(35) , and (a8)
I+ B+ B + 26, 8,,(35)

50: :Bzz +ﬁZI (35) ; (49)
1+ B3+ By + 28, B (:39)

Ba + B, (.70)

60= )
J1+ B2 + B +28,, ., (.70)

and (50)

.60

= ﬁJZ +ﬁJl('70) . (51)
L+ B2+ B + 2, 5, (70)

which gives B, = B, =0.431834; B, = f3,, =0.466760; and f;, = f,, =0.464851.
Given the solutions for £, B, Bais Brn» By, and By, from (46) through (51),
the correlations oy, , Oyy s Pry, s Prx, » a0d Py, are determined from equations (7)

and (8) as follows:
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e

Pyy, =40+ (0431 834)(0.466760)(.197432) + (0.431834)(0.466760)(.187942) +
(0.431834)(0.466760)(.185900) + (0.431834)(0.466760)(.185860) / , (52)

{1+ 2(0.431834)* +2(0.431834)2 (.10))x 1 + 2(0.466760)? + 2(0.466760)*(35))}*

Pyy, =-40+(0431 834)(0.464851)(.287319) + (0.431834)(0.464851)(.268181) +
(0.431834)(0.464851)(.258961) + (0.431834)(0.464851)(.258954) / , (53)

{1+2(0.431834)? + 2(0.431834)* (.10))x (1 + 2(0.464851)? +2(0.464851) (70))}*

Py, =40+ (0.464851)(0.466760)(.197432) + (0.464851)(0.466760)(.187942) +
(0.464851)(0.466760)(.185900) + (0.464851)(0.466760)(.185860) / , (54)

{1+ 2(0.466760)? + 2(0.466760)* (35))x (1 + 2(0.464851)? + 2(0.464851)2 (70) )}

_ (0.466760)(.197432) + (0.466760)(.185960)

ylel - (55)
J+2(0.466760)* +2(0.466760)* (.35))

(0.466760)(.187942) + (0.466760)(.185860)
vx, = , and (56)
J1+2(0.466760)* +2(0.466760)* (.35))

Simplifying (52) through (56) gives: p,, =.369251, p,, =.393505, p,,, =.508267,
Py,x,, =-141997,and p, . =.138445.

Note that the correlations in the numerators of (52) through (56) were determined
by evaluating equation (5) from substituting the prespecified correlations from step 4 of

the numerical example and constants from Table 1. For example, the correlation py v =

.197432 in equation (52) was determined by evaluating (5) from substituting the values of

r, =.350171, r, =.657772, and the constants from Table 1 representing the exponential

and double exponential distributions.
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