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A Method for Simulating Correlated Non-normal Systems of Statistical Equations

Real world data often fail to meet the underlying assumptions of normal statistical theory.

Many statistical procedures in the psychological and educational sciences involve models

that may include a system of statistical equations with non-normal correlated variables

(e.g., factor analysis, structural equation modeling, or other complex applications of the

general linear model). Monte Carlo techniques are used to test the appropriateness of

statistical procedures when the underlying assumptions of these procedures are violated.

There is a paucity of methods for generating systems of statistical equations in a simple

an efficient manner. Thus, the focus of the current study is to derive a general procedure

for simulating correlated non-normal systems of statistical equations with a focus on

computational efficiency. The procedure allows for the systematic control of correlated

non-normal (a) stochastic disturbance terms, (b) independent variables, and (c) dependent

and independent variables within a system. A numerical example is provided to

demonstrate the procedure. The results of a Monte Carlo simulation are provided to

demonstrate that the proposed method generates the desired population parameters and

intercorrelations.

3
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A Method for Simulating Correlated Non-normal Systems of Statistical Equations

1. Introduction

It has been documented that data sets in the psychological and educational

sciences often violate the usual parametric assumptions underlying normal curve theory

(Blair, 1981; Bradley, 1968, 1982; Micceri, 1989; Pearson & Please, 1975). Further,

many variables of interest (e.g., reaction time) are intrinsically non-normal (Miller, 1988;

Zumbo & Coulombe, 1997). In view of these concerns, behavioral and other applied

researchers have relied on the results of Monte Carlo studies to aid in the proper

application of various statistical techniques. For example, Monte Carlo methods may be

used to compare the small sample properties of a test statistic with its competitor(s) or

whether these properties are consistent with the statistic's asymptotic approximation

(e.g., Headrick & Rotou, 2001; Headrick & Sawilowsky, 2000).

With the advances made in quantitative methods, and the availability of the

modern desktop computer, Monte Carlo methods are widely applicable to many areas of

statistical research. As a result, more sophisticated methods of simulating data have

become available for conducting Monte Carlo studies. For example, Markov chain Monte

Carlo methods (e.g., the Gibbs or slice sampler, Gelfand & Smith, 1990; Robert &

Casella, 1999) are commonly used to generate posterior distributions to carry out

Bayesian analyses in the context of learning or item response theories (e.g., Albert, J. H.,

1992; Verguts & De Boeck, 2000). Other applications of modern computer intensive

techniques include: the method of approximate bootstrap confidence (ABC) intervals

(Efron & Tibishirani, 1998); network-based direct Monte Carlo sampling in the context

of conditional logistic regression for evaluating drug withdrawal symptoms (Mehta,
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Patel, & Senchaudhuri, 2000); and likelihood inference with missing data (Gilks,

Richardson, & Spiegelhalter, 1998).

With this plethora of uses for Monte Carlo methods in mind, there may be

occasions when it is desirable to investigate the properties of statistics that involve

systems of statistical equations under a variety of conditions. For example, latent factor

theory of intelligence (e.g., Spearman, 1904) was the impetus for the development of

factor analytic methods. The subsequent generalization of factor theory (Thurstone, 1940)

resulted in many applications in the social sciences including its common use in the

development and validation of psychometric scales (e.g., personality measures).

However, the theory underlying these applications was based on normal curve theory that

also included the assumption of uncorrelated disturbance terms.

Developments in structural equation modeling (SEM) allow researchers to model

correlated disturbance structures. Most SEM software packages use maximum likelihood

estimation (IVILE) procedures as a default option. Unfortunately, MLE has been

demonstrated to be extremely sensitive to departures from multivariate normality

(Muthén & Kaplan, 1985). For example, suppose the simple factor analysis model

depicted in Figure 1 represents a two-factor model of intelligence where the two latent

factors (e.g., performance and verbal intelligence) are assumed to follow normal

distributions. In practice, the six manifest variables (Y 's) used to measure these

constructs may not have normal distributions. Further, the errors from these six tests may

also be non-normal and correlated due to response bias. Thus, the factor analytic model in

Figure 1 is an example of a system of equations where it may be desired to simulate (a)
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correlated non-normal manifest variables (Y 's), (b) correlated latent variables having

normal distributions ( X ' s), and (c) correlated non-normal error terms ( e ' s).

More generally, consider the p-th equation from a system of T equations as

follows:

yp =xpl3p +UpEp, (1)

wh..ve yr old ry 1,),,a / v ;o R ;e.,../ np kl ,N ftp , e's 1.1.11 1J

real positive scalar. Combining all T equations of the form in (1) yields a linear system

that can generally be expressed as:

y=x13+ac, (2)

where y and c have dimension (TN xl) , x is (TN x K) , pis (K xl) , where

K p=lk P , and a represents T scalars associated with each of the T equations. The

stochastic disturbances (c ) in (2) are also assumed to have expected values of zero and

unit variances.

If the disturbance terms in (2) are contemporaneously correlated (e.g., Ep is

correlated with cq ) then a gain in efficiency can be achieved by testing the system jointly

using the method of generalized least squares (GLS) (e.g., Judge, Hill, Griffiths,

Lutkepohl, & Lee, 1985, p. 447). This approach of joint estimation is perhaps better

known as "seemingly unrelated regression equation estimation" (Zellner, 1962).

Moreover, the stronger the correlations are between the disturbance terms (or the weaker

the correlations are between the independent variables) within (2), the greater the

efficiency of GLS relative to ordinary least squares (OLS) (Dwivedi & Srivastava, 1978).

Thus, it may be desirable to study the relative Type I error and power properties of the

6
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OLS and GLS estimators under non-normal conditions. Such an investigation would

usually be carried out using Monte Carlo methods. To determine any advantages of GLS

relative to OLS, a variety of non-normal distributions with varying degrees of correlation

between the disturbances would usually be included in the Monte Carlo study.

Generalized linear models (GLMs) and nonparametric tests have been suggested

as alternatives to OLS when the stochastic disturbance populations are non-normal. In

terms of GLMs, the disturbances can be specified to be some known continuous

distribution functions (e.g., exponential) (Hilbe, 1994). As such, statisticians conducting

Monte Carlo studies could investigate the validity and robustness of test statistics for

various GLMs, including OLS regression (a GLM with an identity link and normal

conditional distributions), when the error distributions have been misspecified. For

example, suppose the disturbance populations in (2) follow a gamma distribution with

parameters that yield typical fan-shaped heteroscedastic patterns. Under these conditions,

one could compare OLS and nonparametric (rank) regression procedures with a GLM

using various gamma distributions specified as the stochastic disturbance vector in (2).

Additionally, if the disturbances in (2) are non-normal and correlated, then a GLM with

generalized estimating equations (GEEs) could also be included in the study.

GEEs have gained considerable attention as a technique for analyzing data with

dependent non-normal errors (Liang & Zeger, 1986). In terms of the error component in

(2), the GEEs are GLS matrices that model their correlational structures while the GLM

specifies the distributional shapes of these terms (Horton & Lipsitz, 1999). Other

statistical analyses that may involve systems of statistical equations in Monte Carlo

4 7
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studies include: heirachical linear models; time series analysis; and other applications of

the GLM.

Most statistics textbook authors discuss the validity of linear models or test

statistics in terms of the various assumptions concerning the stochastic disturbance

populations (e.g., Cook & Weisberg, 1999; Neter, Kutner, Nachtsheim & Wasserman,

1996). For example, the usual OLS regression procedure has the assumptions that the

stochastic disturbance terms be independent and normally distributed with conditional

expectations of zero and constant variances. As such, in order to examine the properties

of systems of statistical equations using Monte Carlo methods, it is necessary to have an

appropriate data generation procedure that would allow for the a priori specification of

the distributional shapes and correlation structures of the stochastic disturbance

populations (such as the vector c in equation 2). Further, it is desirable that this

procedure be both efficient and general enough to enable the simulation of a variety of

statistical problems that may arise e.g., autocorrelation, multicollinearity, non-normality,

unequal variances or regression slopes, and other violations of assumptions.

There are procedures that will simulate correlated non-normal distributions (e.g.,

Headrick & Sawilowsky, 1999; Vale & Maurelli, 1983). These procedures are able to

generate k correlated non-normal variables for a single equation as in (1) or a system of

independent equations. However, these procedures have limitations with respect to their

ability to generate a system of correlated non-normal statistical equations. This can be

demonstrated by considering six non-normal distributions X1,..., X6 generated with zero

means and unit variances from the Headrick and Sawilowsky (1999) procedure where

each of the X's has a unique non-normal distribution and a unique pairwise correlation

5 8
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with the other variables. To form a system of two regression equations, let X1 and X2

represent the two dependent measures with X3 and X 4 as the independent variables for

the first equation and X5 and X6 as the independent variables for the second equation.

Further, let ul and u2 represent the resulting error terms from the OLS regression of the

dependent measures on the independent variables for this system.

This approach to creating a system of statistical equations presents a problem if

control is desired over u1 and u2 in terms of their distributional shapes and correlation.

Specifically, the resulting skew, kurtosis, and correlation between the error terms would

be difficult to analytically determine. Moreover, the variances of ul and u2 would also

be unequal. These problems are exacerbated when more equations are introduced into the

system, which may also include various specified degrees of correlation and non-

normality.

Another problem with respect to the Headrick and Sawilowsky (1999) and Vale

and Maurelli (1983) multivariate power methods is that these procedures are extensions

of the Fleishman (1978) univariate power method. As such, not all non-normal (marginal)

distributions can be generated in terms of the various possible combinations of skew and

kurtosis. For example, the lower boundary point of kurtosis for symmetric distributions is

1.15132 (Headrick & Sawilowsky, 2000). Thus, it is not theoretically possible to

simulate a (rectangular) uniform density using these procedures. (See Headrick &

Sawilowsky, 2000, for a more complete discussion on the derivation of the boundary for

the Fleishman coefficient model.)

To circumvent the aforementioned problem, Headrick (2000) derived a

polynomial transformation for the power methods that allows for the additional control of

6
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the fifth and sixth moments. As a result, a much larger family of distributions is possible

to simulate in terms of the available combinations of skew and kurtosis. Further, simple

families of distributions also exist in terms of various combinations of fourth and sixth

standardized cumulants.

2. Purpose of the Study

There is a paucity of methods for simulating systems of aorrelated statistical

equations that enable the evaluation of more modern sophisticated statistical procedures

as described above. Thus, the purpose of this study is to derive a general procedure that

allows for the generation of systems of statistical equations with correlated non-normal

distributions with the least amount of difficulty. More specifically, the objectives are to

(a) extend the Headrick (2000) polynomial transformation to develop a method that

generates systems of statistical equations with correlated non-normal dependent and

independent variables and correlated non-normal stochastic disturbance terms, and (b)

provide Mathematica (Wolfram, version 4.0, 1999) notebooks (available from the first

author) that solve for power constants, intermediate correlations, and slope coefficients

for implementing the procedure.

The procedure is derived generally for simulating a system of T equations. A

numerical example is subsequently provided to demonstrate the procedure. The results of

a Monte Carlo simulation are also provided to demonstrate that the proposed procedure

generates the desired population parameters and intercorrelations.

3. Mathematical Development

Consider the T equations in (2) more explicitly as follows:

= flio + Xlj filk Xlk 61611 (3a)

1 0
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Y = flpo + fip, X + + k X ++ 16)9.1X + + X + pe

Y = [Iq0 + ,8qlX ql ++ qi X qi +
YT = fiTO flT1XTI + + 16Ti X Ti

+ figicX + a qeq
9

and

+ fiTk X77c CrTeT

(3b)

(3c)

(3d)

The proposed procedure creates 11, Y. from the right-hand sides of (3a)

through (3d). That is, for all T equations, the Y variables are linear combinations of

randomly generated X and e terms. Because each of the disturbance terms (e ) has unit

variance, the scalar terms (a) are included to allow for the creation of equal or unequal

variance conditions. It should also be noted that it is not necessary for each of these

equations to have the same number of independent variables. (Eliminating a particular

independent variable in the system can be accomplished by setting its associated slope

coefficient to zero.)

Because the independent variables and stochastic disturbance terms in (3a)

through (3d) are generated and correlated in the same manner, we have selected the

independent variables X and X in (3b) to refer to in deriving the proposed method.

Correlations between ep and eq or between X and Xqj in (3b) and (3c) can be created

in an analogous manner with the method presented below.

More specifically, the X and Xpi in (3b) and 3c) are generated and correlated

using the fifth-order polynomial transformation derived by Headrick (2000, Equation 16)

as follows:

X = COpi + C XI +
Pi lpl

X . +C .X' +
PJ PJ 1 PJ PJ

c X12 +C X13 c X'4 + C5 X , and (4a)r5

C X12 +C
31,1

Xf3 +C4pi
X14 +C

5
X"

2 Pi Pi Pi
(4b)

Pi

2 pt fti 3 pt pi 4 pi pi

81 1
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where X lci and X /pi N(0,1). The constant coefficients in (4a) and (4b) are

determined by simultaneously solving equations (37) through (42) from Headrick (2000,

Appendix 1) such that X and X have zero means, unit variances, and the third ( ),

fourth ( 72), fifth ( 73 ), and sixth ( y4) standardized cumulants from desired probability

density functions.

The values of X and X' in (4a) and (4b) that are used to create the
PJ

independent variables ( X , X p1) in (3b) are correlated at an intermediate level

according to the following Lemma:

Lemma 1 . Let r be real-valued where Irp,1 E [0, 1] V pr,190,pk , and let Z1, V, Wp1,..., WPk

iid N(0,1). Further, let Z, = rpoZ, + VV1 rp20 , where t= 1 if rpo < 1, and t= 0 if rpo = 1.

If X lc = +I V pi111 ri2), and X = rZ1 +W 111 r , then X ;1 and X'pi N(0,1),

with correlation of p = r
P
or

Pi
r

PI
when t=1, and p = r r

PI
. when t = O. In

xp,xpJ

particular, note that p = r 0 when t= r 7.= = 1, and p
vox 'pj rpix'pj

= r2 when r
Pi

= r
Pi

and for when t= O.

Proof The result is a consequence the proof of Lemma 1 from Headrick and Sawilowsky

(1999).

Note that Lemma 1 enables, for example, the i-th independent variable for each of

the T equations in a given system to be the same. This can be shown, from a more general

use of Lemma 1, as a special case of where rpo = rp, = rq, =1.

9 12
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The intermediate correlation between X lc i and Xp'i ( p ) in Lemma 1 is

determined by setting the following equation from Headrick (2000, Equation 26) to the

desired post-correlation between X and X P pi) in (4a) and (4b):

p ,
=3c4pic0 pi+3c4p1c2p1+9c4pic4p1 +c0pi(c0 pi+c2pi+3c4p1)+

clpic1p1p +3c3picipjp +15c5picIpip +3cipic3p jp
X ',ix pp, rpirpi Vpdepi

- 1 c- -1-1.5cipic5Rip + 45c-, .4:: .13
'3Pi1-3PiP vpixi,11--1.'"1"5pis-3PjP xpixpj 3P1 5P1 xxp')

2 2 3
225C5piC5pip +12C4p1C2pipvpiri 72C4piC4p.ipx,porp +6C3piC3p.ipx,pix,pi

rpix'pj

4
60C5p1C3flip3 +60C3pic5nip3 600C5piC5Dip3 24C4piC4pip rpi+- " r X'pj

120c5p1c5d95 c2p1(c0 c2p + 3C 2c2p1 102 + 12c p2x,pix
X piX

(5)

The purpose of correlating X p' 1 and X 'pi at the intermediate level, px, , is to control

for the non-normalization effect of the constants in (4a) and (4b) such that the resulting

X and X have the desired post-correlation.

Using Lemma 1 more generally, the following theorem can be stated:

Theorem 1. If X X X X , ep, Eq have zero means and unit variances from

equations of the form in (4a) and (4b), specified correlations Dx P x PXpjXqj

pepeq from equations of the form in (5), cov(ep , X p1)= 0, and cov(ep , X q,) = 0 ,

then the following correlations hold with respect to (3b) and (3c):

PY X . =
P, V R2.

P + 2 I fipiflpjPXpiXpj
PlPi

13pi + pi flPi P X piX pj

Eqi P X piX qi

7

PYqX 1101 +Z fig2i 4- 2 I figifiqfPx,,,x,,
qi

(6)

(7)
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PY r
P ,

P 1.4 P + E fi pi fl pi Px pdc ilcr q2 + E + E figifigiPx
Pit Pi qi -

cfperq pe,, + Eqj I3pi fiqi PX,;.)C,

PY p(age,i) = V
p

4_ /42
`"'".dt"'pt

PiPi
X p,X

a ppepeq

, and (8)

(9)

Proof. See Appendix 1.

Thus, given exogenous correlations between the independent variables

the pairwise correlation(s) between the dependent variable (Ye ) and the independent

variables ( X ) are determined by simultaneously solving a system of k equations (of the
P,

form in equation 6) in terms of k unknowns ( fiek ) for the desired correlation(s) of pypx .

The correlations pypyq , py , and py,(0. can subsequently be determined by evaluating

(7), (8), and (9) using the specified correlations and slope coefficients from (5) and (6).

4. Numerical Example

Suppose it is desired to generate a system of three equations of the form in (3b).

For k= 2 independent variables, where each disturbance term has unit variance, the

equations are listed as follows:

= filo +fl11X11 + fi12 X 12 + criel (10)

Y2 = fi20 fi21X21 fi22 X22 + u2s2 , and (11)

Y3 --I. fi30 fi31 X31 + fi32 X32 + Cr3 e3 (12)

where var(u,s, ) = cr,2 (1) =1, Vi=1,2,3 .

Letting t= 0 in Lemma 1, for this example, the algorithms to generate correlated normal

deviates are as follows:

ii 14
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)(1,1.111z1+14711v17,

X I/2 = r12z1 + WI 2 /122 ,

X ;1 r21Z1 + W21111 r22i ,

X22 = r22 +14722 r222

A 31 = r31Z1 + W311/ r31 , and

X3'2 = r32Z1 + W32 V1 r322 .

Similarly, the algorithms to generate the correlated errors based on Lemma 1 are:

ej'=rZj'+Wtj1_ri2

(13)

(14)

(15)

(16)

(18)

(19)

6; = r24 + W2 1 , and (20)

= r3
Z' +W3 r 323 I

(21)

(In accordance with Theorem 1, note that Z1 and 4, are independent.) The resulting

in (13) through (21) are normally distributed with zero means, unit variances,

and have the intermediate correlations according to Lemma 1.

Given this general framework, suppose it is desired to approximate the following

correlated non-normal X 's and 6 's in (10), (11), and (12): a) X11 = X2I X3I

exponential, b) X12 = X22 = X32 = double exponential, and c) e1 = 6'2 = 6'3 =Cauchy,

where px11x12 =.10, px21x22 = .35, px31x32 =.70; pun = pyix,2 =.40, py2x2i = py,x.

=.50, p1, = py3x32 =.60; and pe,e2= P5je3 = Pç2ç3 =.40.

The following steps are taken:

1215
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1. Obtain the constants to generate the standardized non-normal distributions (see

Headrick, 2000, pg. 57). The standardized cumulants and constants are listed

below in Table 1.

2. Determine the values of /II r32, rl, r2, and r3 to use in (13) through (21). This

is accomplished using (5) by setting the left-hand side to the desired post-

rnrrel atinn xiixi2= .1n; p = .15; p = 7O) and suhstitiiting th

constants into the right-hand side and then solving for these values. Accordingly,

this yields values of ru =.350171, ri2 =.321446, r2i = .657772, r22 = .597454,

r31 = .937894, r32 =.831441, and r1= r2 = r3 = .749509.

3. Obtain the slope coefficients to use in (10), (11), and (12). This is accomplished

by simultaneously solving two equations of the form in (6) for each of the desired

post-correlations (pypxp, ). The coefficients are as follows (see Appendix 2):

fin = fl12 =0.431834, B21 = B22 =0.466760, and fi31= fi32 =0.464851.,

4. Substitute the values of /II r32 ij, r2 , and r3 obtained from step (2) into

equations (13) through (21) to generate X;1, X;2, ec; X1, X;29 e'2 ; and X ;1,

X;2, 4. The intermediate correlations are px;ix;2 = /11112 = 112561, x;,x;2 =

r21 r22 =.392989, px;,x;2. = r31r32 =.779803, and p6;8; = p6;5; = pc;,; = rir2 =

r1r3 = r2r3 = .561764.

5. Substitute the values of X' X' e' X' X' E' and X X' e' from11, 12 1 21 n ,, 2 31 9 32 3

step (4) into equations of the form in (4a) and (4b) to generate the non-normal
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deviates X,,, X12 , el ; X21 , X22 , 62 ; and X31, X32 , 63 with the desired post-

correlations.

6. Substitute X11, X12 , si ; X21 , X22 , 62 ; and X31, X32 , 63 from step (5) and the

slope coefficients from step (3) into (10), (11), and (12) to generate the values of

Yi , Y2, and Y3 with the desired post-intercorrelations.

Given the specified correlations from above, the correlations between the

dependent variables are follows (see Appendix 2): pyiy2 = .369251, pyty, = .393505, and

py,y, = .508267. The correlations between Py2xii and py2x., for example, are as follows

(see Appendix 2): py2xii = .141997 and pui2 = .138445.

5. Monte Carlo Simulation

To evaluate the proposed procedure, the population parameters ,u , cf2, 7I , fY2 ,

y3, y4, and the correlations between and within equations (9), (10), and (11) from the

numerical example in the previous section were simulated using an algorithm coded in

Fortran 77. The algorithm used subroutines NORMB1 and UNI1 from RANGEN (Blair,

1987) to generate pseudo-random normal and uniform deviates. Independent sample sizes

of N = (10,10,10), (100,100,100), (1000,1000,1000), and (10000,10000,10000) were

generated for simulating the specified standardized cumulants and various correlations.

Values of all standardized cumulants and correlations were calculated for each repetition

and then averaged across 50,000 repetitions. Thus, the average values of ,u (A ), o-2

(62), 71( ), 72(72), 73( ), 74(74), Pxx(Pxx,2), Px,,x(Px2,x22),

PX31X32 ( Px,,x), AA, (Pun), Py,x(Py,x), Py2x2,, (13y2x21), Py2x22(Py,x22)'

14 17
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Py3x3,( Py3x3i)7 Py3x32( Py3x32)7 Py1y2( Pyiy2)7 Py1y3( Py1y3)7 Py2y3( Py2y3 )9 P }',X, ( --15y2X 11),

P ( -15 12) , pe1,2 (75eie2), p ( p-ei, ), and p6253( Pe3,3 ) computed were based on

Nx50,000 random deviates. The average values of the population parameters are reported

in Table 2 and Table 3.

Inspection of Tables 2 and 3 indicate that the proposed procedure generated

average values of the popuiation parameters that were in close agreement with their

respective population parameters. In terms of the simulation results concerning the

average values of correlation, the procedure produced excellent agreement between these

values and their associated population parameters even for sample sizes of N= 10.

6. Discussion

The simulation results from the previous section indicated that the proposed

procedure generated the desired population parameters and specified intercorrelations. It

is also beneficial to provide visual representations of some of the distributions generated

by the Headrick (2000) procedure. Specifically, illustrated in Figure 2 are the relative

frequency histograms of the approximations of the exponential and double exponential

pdf s. Inspection of panels A and B in Figure 2 reveals that the proposed procedure

approximated the considered theoretical densities very well.

The proposed procedure is also useful for generating other systems of equations

based on the GLM. For example, the method could be used to generate T independent

equations to investigate the statistical properties of competing nonparametric tests in the

context of analysis of covariance (ANCOVA) or repeated measures.

With respect to ANCOVA, one attractive feature of the proposed method is that it

has an advantage over other competing procedures (e.g., Knapp & Swoyer, 1967) to the
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extent that it allows for the creation of populations with unequal regression slopes while

maintaining the between-group equal variance assumption. This can observed by

inspecting equations (3b) and (3c) where the slope coefficient(s) could change (i.e., made

unequal) while the error terms remain unchanged. Subsequent to any changes made to the

slope coefficients, the variate and covariate correlations can then be determined from

equation (6). Thus, this feature of the proposed method would be a remedy to the

problem with the algorithms used to correlate data in the Monte Carlo studies by

Hamilton (1976) and Peckham (1968). Specifically, the algorithms used in these studies

were unable to simulate the unequal slope condition without also simultaneously

violating the between-group equal variance assumption. (See Rogosa, 1980, for a

discussion on the validity of the Hamilton, 1976, and Peckham, 1968 studies with respect

to this issue.)

Many other applications of the proposed procedure to the GLM are possible.

From the GLM perspective, the dependent variables (Yr ) could represent the same

variable collected under T different conditions or at time points 1,..., T. In either case, the

independent variables ( X ) could represent static covariates (e.g., pre-existing ability

measures often used in ANCOVA models). Thus, using the special case of Lemma 1

noted above, the i-th independent variable in each of the T equations would be the same.

Conversely, the independent variables ( X0 ) could also be different for each of the T

equations and may be used to represent time-varying covariates (i.e., some variables

measured over the T periods along with Yr ). There is also the possibility of using a

combination of both static and time-varying covariates ( ). As such, a variety of

analytic procedures are comparable under this data generation process.
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The proposed method would also allow the generation of repeated measures data

of nonspherical structures with non-normal disturbances and non-normal covariates. It

should also be noted that with non-normal stochastic populations one could specify all of

these distributions to be the same. This assumption is implicit in parametric analyses of

repeated measures data because normal disturbance populations are implied. Likewise,

robust estimators such as the rank-based shift model (Lehmann, 1998) also assume that

disturbance populations have identical (but not necessarily normal) shapes.

By contrast, fully nonparametric hypotheses (e.g., Akritas & Arnold, 1994) make

no assumptions about the distribution of the stochastic disturbance populations and

therefore do not require the conditional (disturbance) populations to have identical

variances or distributional shapes. Fully nonparametric hypotheses differ from robust

estimators because they do not attribute the rejection to location parameters alone but

rather to any distributional differences, a concept recently referred to as "stochastic

heterogeneity" (Varga & Delaney, 1998). Thus, hypotheses of this form reduce the risk

of drawing incorrect conclusions about the likely sources of a statistically significant

result, but do so at the cost of not being able to characterize precisely how population

distributions differ (Serlin & Harwell, 2001).

The proposed method would also be useful in the context of time series analysis.

Specifically, the procedure could be used to model instrumental variables which address

one of the problems with certain autoregressive models (e.g., the adaptive expectations

model) where the dependent measure from a preceding time period ( Ye ) is included as a

stochastic independent variable in the subsequent (q-th) period. As such, the vectors Yp

and e are usually correlated. Using the proposed method, a Monte Carlo study could be
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arranged to simulate non-normal "proxies" correlated at various levels between Yp and

. The correlations can be determined from equation (9).

Application of the proposed method to the GLM is flexible and has the potential

to simulate other types of models where disturbance populations change over time. For

example, when data sets with repeated measures have mistimed measures or missing

data, the GLM with (lEEs and hierarchical linear models are often considered preferable

to the usual OLS univariate and multivariate procedures.

It may also be reasonable to consider a model where the correlation structure is a

function of time between the observations. Thus, data could be also be generated for

Monte Carlo studies involving dynamic regression models that have distributed lags or

moving averages.

7. Conclusion

Systems of linear statistical equations with correlated non-normal variables are

widely applicable in many experimental situations. Some examples include confirmatory

factor analysis, hierarchical linear models, time series analysis, and other applications of

the general linear model (e.g., analysis of covariance, repeated measures). Thus, the

concern of the present study was to develop a procedure that enables the simulation of

systems of statistical equations. The procedure allows for the creation of systems with

non-normal variables and specified intercorrelations between a) dependent variables, b)

independent variables, c) dependent and independent variables, and d) stochastic error

terms. The results of a Monte Carlo simulation indicate that the proposed procedure

generated the desired population parameters and specified intercorrelations.
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TABLE 1. Values of co ,...,c5 that were used to simulate the desired non-normal
distributionsa.

Dist. c0 c, C2 C3 C4 C5

1 -0.307740 0.800560 0.318764 0.033500 -0.003675 0.000159
2 0.000000 0.727709 0.000000 0.096303 0.000000 -0.022320
3 0.000000 -0.159685 0.000000 0.355036 0.000000 -0.009473

aThe three distributions are described as follows: (1) approximate exponential (ii = 2,

72 6, y3 = 24, y4 =120 ); (2) approximate double exponential ( 71 = 0, 72 = 3,

73 = 0, 74 = 30 ); and (3) approximate Cauchy (ri = 0, 72 = 25, y3 = 0, y4 =1500 ).

TABLE 2. Values of average correlation from the simulationa.
Population
Correlation

Average
Correlation N=10 N.102 N= 103 N=104

.4000

.4000

.3935

.5000

.5000

.3693

.1420

.1384

.6000

.6000

.5083

.1000

.3500

.7000

.4000

.4000

.4000

PY,XII

py,
X12

PY,Y3

Py2x2,

PY2x22

PY1 y2

i5y2xi,

7 g Y2 x 1 2

Py3X31

i )y3 X32.-

Py,y,

PX,IXt2

13X21x22

T3X31)(32

)3E162

7 56' 1 e 3

PE263

.3999

.3998

.3933

.4998

.5003

.3689

.1421

.1383

.5994

.5999

.5083

.0999

.3501

.6995

.3993

.3992

.3997

.3998

.4000

.3933

.4998

.5000

.3690

.1420

.1383

.5995

.5999

.5082

.0999

.3500

.6995

.3997

.3999

.3999

.3998

.4001

.3931

.4999

.5001

.3690

.1421

.1385

.5995

.6000

.5082

.1000

.3502

.6996

.3995

.3994

.4000

.3999

.4000

.3934

.5000

.4999

.3692

.1419

.1384

.5999

.5999

.5083

.1000

.3499

.6999

.4000

.4000

.4000

aThe population parameters for the variables are: (1) X11 = X21= X31= (y = 2,

72 = 6, 73 = 24, 74 =120 ); (2) X12= X22 = X32 = ( = 0, 72 = 3, 73 = 0, 74 = 30 );

and (3) El= 62= E3 = (7 = 0, 72 = 25, 73 = 0, 74 =1500 ).

24 2 7
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TABLE 3. Average values of mean(A), variance( el 2 ), and the third( 71), fourth( )72 )/

fifth( 73 ), and sixth( )74 ) standardized cumulants from the simulationa.

Xi 2 61 X21 X22 E 2 X31 X32 3

N=10

^11

cr
2

72

73

74

-0.00004

0.99293

1.99887

5.95550

23.8746

11A A11
117.114.7

-0.00038

1.00042

-0.00352

3.00977

-0.07745

nrs A"1/%1.3V.43U1

-0.00021

0.99736

-0.00480

24.8245

-0.18880

I A, A "...cc4.4JJ

0.00010

0.99928

1.99949

5.95497

23.8247

118.388

0.00007

1.00083

0.00023

3.02343

-0.00188

31.2483

-0.00008

0.99856

0.00450

24.8869

0.81641

1484.101

-0.00034

0.99872

1.99901

5.96749

23.9470

119.152

-0.00001

0.99998

0.00101

2.99814

0.01741

29.9682

-0.00008

1.09866

-0.00170

24.7938

-0.55553

1475.551

N=102

ill

6.2

72

73

74

-0.00005

0.99921

1.99896

5.99765

24.0212

120.265

-0.00008

1.00020

-0.00129

3.00426

-0.03029

30.2585

-0.00007

0.99960

-0.00321

24.9644

-0.38283

1481.675

0.00002

0.99918

1.99860

5.98813

23.8938

118.601

-0.00012

1.00005

-0.00008

3.00426

0.00304

30.2260

-0.00001

0.99973

0.00633

24.9696

0.10304

1495.552

-0.0001

0.99891

1.99785

5.98946

23.9333

119.097

-0.00001

0.99990

0.00040

3.00009

-0.02657

30.0729

-0.00001

1.00975

0.00433

24.9383

0.09315

1492.868

N=103

71

73

74

-0.00007

0.99915

1.99811

5.99076

23.9727

120.061

-0.00018

1.00033

-0.00242

3.00629

-0.06022

30.2127

-0.00024

0.998555

-0.00200

24.8942

-0.00207

1486.226

0.00010

0.99938

1.99967

5.99425

23.9342

118.974

0.00003

1.00042

0.00012

3.01366

-0.02068

30.1845

-0.00013

1.00030

0.00341

25.0105

0.09304

1502.074

-0.0001

0.99885

1.99809

5.99569

24.0306

120.518

0.00002

1.00026

0.00029

3.00495

-0.00248

30.1534

-0.00013

1.00128

-0.00275

24.9178

-0.07326

1493.898

N=104

1-^1

e

7'

72

73

74

-0.00003

0.99984

1.99902

6.00722

23.9842

120.016

-0.00003

0.99997

-0.00025

2.99966

-0.00484

29.9999

-0.00002

0.99996

0.00050

24.9951

0.01022

1499.177

0.00000

0.99985

2.00030

5.99153

24.0127

119.971

-0.00002

1.00002

-0.00024

3.00039

-0.00897

30.0030

0.00000

0.99990

-0.00020

24.9932

0.06241

1499.134

-0.00001

0.99908

1.99803

5.99649

23.9822

119.993

0.00001

1.00000

0.00016

2.99952

-0.00160

29.9869

0.00000

0.99999

0.00201

25.0004

0.19972

1499.332

aThe population parameters for the variables are: (1) X11 = X21 = X31 = = 2, r2 = 6,
13 = 24, 74 =120 ); (2) X12 = X22 = X32 = ( = 0, = = 0, 14 = 30 ); and (3)
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FIGURE 1. A two factor confirmatory factor analysis model with cross-loadings and
correlated error terms (E 's). The parameters p and 0 denote correlations between the
X's and between the E s.
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FIGURE 2. Approximations of the exponential and double exponential pdf's generated
by the Headrick (2000) polynomial transformation from equations (4a) and (4b). The
constants used to simulate the densities are listed in Table 1. The sample size used was
10,000. For amenability to the standard exponential pdf, a constant of 1.0 was added to
each value of X in panel A.
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Appendix 1

Without loss of generality, Theorem 1 can be shown from the independent use of

Lemma 1 to create Xp,, Xpi; and ep, eq such that cov(ep , Xp, ) = 0 and

cov(eq, X q,) = 0 , V1 k , and with random variables that follow a standard normal

distribution.

Lifp X j E[Y It4X J

1
PROOF: Pypx = (E[y x (E[X (E[X pi ])

2
)1

/2

E[Yq X pi] E[Yq]E[X pi]
PYqX =

{(E[Yq2] (E[Yq])2)x (E[X2p11 (E[X p1])2 )11/2

E[Yp Yq ] E[Y p]E[Yq]
andP" {(E[1712,] (E[Y ])2 ) X (E[Yq2 (E[Yq])2 )}1/ 2

ERY p)(c r qEq)] E[Y p]E'[C r gE q]
PY (c E) 2{(E[17 (EP' 1)2 ) X (E[(CigEri )21 (E[c r q1)2 )1V2

(22)

(23)

(24)

(25)

Setting cis. =1 and all other constants ( c 0 , c2,. , . , c 5.. ) to zero in equations of the form

in (4a), (4b), and (5) gives the standard normal case where X = X/pi , X = x,lc
Xqi= X, Xqi = X E = E,, E = Ej P = Pxx,,, Px,,x = Px;dc,

pvpin , and p,pe, = p . Further, in Lemma 1, (3b), and (3c), let all X be a function

of Z1 and let all X be a function of Z2 . Similarly, let ep be a function of Z; and E

be a function of Z,where cov(Z1,4) = cov(Z2, = cov(V,W) = 0.

It follows from expressing Z2 as a function of Z1 in Lemma 1 that:

E[X (p] = rq, E[Z 2] + E[IV 01\11 rq21 = rp0E[Z1] E[Vhil r12;0)+ E[1470]1\1-q2, = 0,

because E[Z1] = E[V] = E[14/ ] = 0 .
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It follows analogously that:

E[crqeq ] = (regE[Z2']+ E[147,q111 re2q)

= eg (reoE[Za+ E[V1V1 r52,0 ) + EE1 re2, ) =0, because

E[Za= E[171= E[I eq]= 0 .

Define the variances of X and craeg as:

var[Xq, ] = E[X] (E[X qi])2 , and (26)

var[a
q q

]= 0-2 Var[Eq]= CY q2 (E[eq2](E[Eq])2) , since a is a constant scalar. (27)
q

Applying Lemma 1 to both (26) and (27) gives:

q2i]= E[rq2y 2 ;muvar[X ] E[X 111r2 .I1r2. +W2 r2W2+p0 fqz 'iqt qi p0 qi qi

2r 0 rqi2VZ
1
111 rp0 2 + 2r 0 r .Wqz

.Z
1
111 r2 p 0 'p272 0

p qi qz

(28)

Efr8217.2 1120712
V
/2 + 2r6 V Weq .11 re2 0

71.2 +147,2 712 we2

(29)
2regor: VZc re2 + 2regore,W

r: 71.2 ore2

because E[X qi] = E[eq] =0.

Taking expectations in (28) and (29) yields:

var[X0 ] = E[X:i ] =1, and

var[eq] = E[e] =1, because

E[42] = E[Z2] = Ve:] = E[Wq2i] = E[V2] = EIV'2] =1, and

E[Z1] = E[Za = E[14 eq] = E[Wgi] = E[V] = E[V'] =0.

Thus,

crq2E[eq2]= o_q2
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It follows from analogous arguments that:

E[Xp1] = E[e] =0,

var[X ] = E[Xp2, ] = 1, and

crp2E[ep2 crp2 crp2

Thus,

E[Y]=fl0 and ElYq]= fiqo, because E[6:p] = E[eq ]= E[Xo ]= E[X = 0 , V i=1,. .

Hence,

E[Y pX Op° )(0)
PY X =

E[Yp 21 ig30

E[YqX (fiqo )(0)
PY X =

E[Yq2 fi(210

E[YpYq I fi pofigo
PYpYq I

VE[171,2] fi:0 VE[1q2] fig20

ERY p)(agEq)l (i8pp )(0)
PYP(ageq)

E[17p21 15 ;20 ArCIT

(30)

(31)

, and (32)

Expressing Z2 ( 4 ) as a function of Z1 (Z;) from Lemma 1 yields:

= (fl + o- (re p4 +W re2p) +I fi pi(rp,Z1 +W
,

r2 ))2
P

yp2 = (flpo aq (rep oZ; /12, + 147,,V1 ) +

Efig,(rg,(rpozi+171/1r12,0)+WgivT-7,))2 ,

qi

Y pX = (fipo Crp (rep Wep re2p ) Efip,(rp,z1+wp,vi_rp2,))x
Pi

(rp, + Wpi 111 ),

(33)

(34)

(35)

(36)
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Yq X = (fi po Crq(repoZc +17'111 111 re2

Eflqi(rqi(rpoz, -Eva11 r0 ))x(rpi +W
qi

Yp Yq = (fipo + (re pZc +W re2p)+ E fipi (rpiz, + 147p; 111-2pi )) x
Pi

(figo+Crq(repoZif +171111re2po +We.011 re2 ) +

Z,
qi

(yp )(C qe q) = (16 + Up(repZ;+147ep.111 /52 ) + Efipi(rpiz, vvpi ji r,22; )) x

Pi

a (re poZ +V' re2p0 +W ).

Expanding the right-hand sides of (34) through (39) and taking expectations gives:

E[Y 2 ] = 0-2 + fi2 +E fi2p pi pi pi X pX

E[ Yq2 ] = aq2 + flq2c, flq2, + 2 E fig, AD
qi qjqi

E[YX1 = fl1 + Efipipxpixpj
PjPi

E[Y X pi] = figiPxox ,

qi

E[YpYq ] = crpC r (IPe peg OP p0flq0+E Efipi figiPxpixo , and
pi qi

E[() p)(a gE q)] =cpPEA.

Substituting (40) through (45) into (30) through (33) and simplifying gives the

expressions in (6), (7), (8), and (9) as follows:

.1

pYpxpi =
161,, Epi flpiPxp,Xp,

0.2
P P pi P P X piX pi

Pi PlPi

30
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Eqi flqiPxqjxpj
PKIXpi = 92 V 142 E

Pqt Peg Xoxqi
qi qjqi

cfperqpepeq+ E qjflpii8qiPxpixqii

PYpYq +Efip2i +2V R
PpiPpiPXpiXpi

+E ei2ri 2V n
, and

PqiPPqj
Pi PlPi qi qiqi

PY p(ageq) =

a pp pe

" V P/42 1VR
q " p pi l" pi P pjP X pX

PI

Pi Pl Pi

which completes the proof.
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Appendix 2

For the desired correlations of pun = Av. = .40, py2x2i = py2x22 = .50, and

P P =.60, the slope coefficients Al and fii2 ; fi21 and /322 ; fl31 and fi32 are

determined by simultaneously solving the following three independent sets of two

equations for the unknowns (fi., , fi.2 ):

fin + 1112, (.10).40 = , and
/6122 2/611 /312 (.10)

1812 A.- fill (.10)
.40 =

ii + fii22 + 2/311/312 (10)

/321 + /322 (35)
, and.50=

111 + + + 2,821 /322 (.35)

/622 + /621(35).50=
\/1+fi + /3:2 + 21320622 (.35)

= /331 + /332 (.70)
, and.60

+ + + 21330632 (.70)

.60 /632 + fi31(70)

+ fi32, ±fi2 + 2fi31fi32 (.70)

(46)

(47)

(48)

(49)

(50)

(51)

r- 21 fl22which gives fin = flu B=0.431834; = 0.466760; and /331 = fi32 =0.464851.

Given the solutions for fin , 812
7 $21 P22 9

and fi32 from (46) through (51),

the correlations pyiy2 pyiy, , py21. , py2xii , and p1 are determined from equations (7)

and (8) as follows:

35
32
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pyin= .40 + (0.431834)(0.466760)(.197432) + (0.431834)(0.466760)(.187942) +

(0.431834)(0.466760)(.185900) + (0.431834)(0.466760)(.185860)/ , (52)

{(1+ 2(0.431834)2 + 2(0.431834)2(.10))X (11- 2(0.466760)2 + 2(0.466760)2(.35))J

pyin= .40 + (0.431834)(0.464851)(287319) + (0.431834)(0.464851)(268181) +

(0.431834)(0.464851)(258961) + (0.431834)(0.464851)(.258954)/ , (53)

1(1 + 2(0.431834)2 + 2(0.431834)2 (.10))x + 2(0.464851)2 + 2(0.464851)2(.70))}" 2

pnn= .40 + (0.464851)(0.466760)(.197432)+ (0.464851)(0.466760)(.187942)+

(0.464851)(0.466760)(.185900)+ (0.464851)(0.466760)(.185860)/ , (54)

1(1+ 2(0.466760)2 + 2(0.466760)2 (.35))X + 2(0.464851)2 + 2(0.464851)2(.70))}"

=Py2xi,

Py2x,2

(0.466760)(.197432) + (0.466760)(.185960)

+ 2(0.466760)2 +

(0.466760)(.187942)+

2(0.466760)2 (.35).)

(0.466760)(18586,0)
and,

11(1 + 2(0.466760)2 + 2(0.466760)2(.35))

(55)

(56)

Simplifying (52) through (56) gives: pyin= .369251, pyin = .393505, py2y3 = .508267,

py2x1, = .141997, and py2x,2 = .138445.

Note that the correlations in the numerators of (52) through (56) were determined

by evaluating equation (5) from substituting the prespecified correlations from step 4 of

the numerical example and constants from Table 1. For example, the correlation p =

.197432 in equation (52) was determined by evaluating (5) from substituting the values of

ri = .350171, r21 = .657772, and the constants from Table 1 representing the exponential

and double exponential distributions.

3 6
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